mirror of
https://github.com/3x4byte/StreetsignRecognition.git
synced 2025-12-21 01:15:52 +00:00
experimental
This commit is contained in:
@@ -37,8 +37,8 @@ class NeuralNetwork:
|
||||
|
||||
correct_amount = 0
|
||||
false_amount = 0
|
||||
for i in range(len(training_set)):
|
||||
fv_to_train = training_set # random.choice(training_set)
|
||||
for i in range(len(training_set)*100):
|
||||
fv_to_train = training_set[i%len(training_set)] # random.choice(training_set)
|
||||
classified_concept, correct = self.classify(fv_to_train)
|
||||
|
||||
if not correct:
|
||||
@@ -47,7 +47,7 @@ class NeuralNetwork:
|
||||
else:
|
||||
correct_amount += 1
|
||||
|
||||
print(f"{i}: {(correct_amount/(correct_amount + false_amount)) * 100}%")
|
||||
#print(f"{i}: {(correct_amount/(correct_amount + false_amount)) * 100}%")
|
||||
pass
|
||||
|
||||
# for a sequence of 3 neurons interpretate their meaning
|
||||
|
||||
17
src/main.py
17
src/main.py
@@ -2,6 +2,7 @@ import os
|
||||
import ast
|
||||
import csv
|
||||
import numpy as np
|
||||
import multiprocessing
|
||||
|
||||
from classes.concept import Concept
|
||||
from classes.feature_vector import FeatureVector
|
||||
@@ -96,10 +97,18 @@ def neural_network(training = os.path.abspath(os.path.join(__file__, "..", "trai
|
||||
cnt_correct += 1 if fv.concept == classified_concept else 0
|
||||
# print(f"{fv.concept} was classified as {classified_concept}")
|
||||
|
||||
print(f"classified {cnt_correct}/{cnt_data} correctly ({round(cnt_correct/cnt_data*100, 3)}%)")
|
||||
#print(f"classified {cnt_correct}/{cnt_data} correctly ({round(cnt_correct/cnt_data*100, 3)}%)")
|
||||
return [cnt_correct, cnt_data - cnt_correct, cnt_data] # richtig, falsch, amount of testing data
|
||||
|
||||
def repeat_n_times(n: int, num_training_vectors: int):
|
||||
for _ in range(n):
|
||||
cnt_correct = 0
|
||||
cnt_data = 0
|
||||
result = neural_network(num_training_vectors=num_training_vectors)
|
||||
cnt_correct += result[0]
|
||||
cnt_data += result[2]
|
||||
print(f"{num_training_vectors}: classified {cnt_correct}/{cnt_data} correctly ({round(cnt_correct/cnt_data*100, 3)}%)")
|
||||
|
||||
if __name__ == "__main__":
|
||||
for i in range(100, 10000, 100):
|
||||
print(f"{i} training vectors: ", end="")
|
||||
neural_network()
|
||||
for num_training_vectors in range(100, 1000, 100):
|
||||
multiprocessing.Process(target=repeat_n_times, args=(100, num_training_vectors, )).start()
|
||||
|
||||
Reference in New Issue
Block a user